6 research outputs found

    Primitive Skill-based Robot Learning from Human Evaluative Feedback

    Full text link
    Reinforcement learning (RL) algorithms face significant challenges when dealing with long-horizon robot manipulation tasks in real-world environments due to sample inefficiency and safety issues. To overcome these challenges, we propose a novel framework, SEED, which leverages two approaches: reinforcement learning from human feedback (RLHF) and primitive skill-based reinforcement learning. Both approaches are particularly effective in addressing sparse reward issues and the complexities involved in long-horizon tasks. By combining them, SEED reduces the human effort required in RLHF and increases safety in training robot manipulation with RL in real-world settings. Additionally, parameterized skills provide a clear view of the agent's high-level intentions, allowing humans to evaluate skill choices before they are executed. This feature makes the training process even safer and more efficient. To evaluate the performance of SEED, we conducted extensive experiments on five manipulation tasks with varying levels of complexity. Our results show that SEED significantly outperforms state-of-the-art RL algorithms in sample efficiency and safety. In addition, SEED also exhibits a substantial reduction of human effort compared to other RLHF methods. Further details and video results can be found at https://seediros23.github.io/

    Decentralized Vehicle Coordination: The Berkeley DeepDrive Drone Dataset

    Full text link
    Decentralized multiagent planning has been an important field of research in robotics. An interesting and impactful application in the field is decentralized vehicle coordination in understructured road environments. For example, in an intersection, it is useful yet difficult to deconflict multiple vehicles of intersecting paths in absence of a central coordinator. We learn from common sense that, for a vehicle to navigate through such understructured environments, the driver must understand and conform to the implicit "social etiquette" observed by nearby drivers. To study this implicit driving protocol, we collect the Berkeley DeepDrive Drone dataset. The dataset contains 1) a set of aerial videos recording understructured driving, 2) a collection of images and annotations to train vehicle detection models, and 3) a kit of development scripts for illustrating typical usages. We believe that the dataset is of primary interest for studying decentralized multiagent planning employed by human drivers and, of secondary interest, for computer vision in remote sensing settings.Comment: 6 pages, 10 figures, 1 tabl

    NOIR: Neural Signal Operated Intelligent Robots for Everyday Activities

    Full text link
    We present Neural Signal Operated Intelligent Robots (NOIR), a general-purpose, intelligent brain-robot interface system that enables humans to command robots to perform everyday activities through brain signals. Through this interface, humans communicate their intended objects of interest and actions to the robots using electroencephalography (EEG). Our novel system demonstrates success in an expansive array of 20 challenging, everyday household activities, including cooking, cleaning, personal care, and entertainment. The effectiveness of the system is improved by its synergistic integration of robot learning algorithms, allowing for NOIR to adapt to individual users and predict their intentions. Our work enhances the way humans interact with robots, replacing traditional channels of interaction with direct, neural communication. Project website: https://noir-corl.github.io/

    Determining crystal structures through crowdsourcing and coursework

    Get PDF
    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality
    corecore